
Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-1

Written by Billy D. Spelchan for www.BlazingGames.com
Copyright © 2003-2005 Blazing Games Inc. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the file called
fdl.txt

Chapter 6

NIM

Contents

In this chapter we finally create our first game.

• Creation of the Gem - We create the games most important asset.
• NIM logo - Creating the title logo.
• Play Game button - Finishing the title scene.
• Limiting Layers - Why you should try to keep the number of layers you use low.
• Five Object Animating Limit - Animating 40 gems with only 5 layers.
• Player Panel - Building the player panel.
• Initializing the Game - Preparing the game to run.
• Updating buttons - Hiding buttons when it is not the player’s turn.
• Ending the Turn - Turn ending and computer thinking.
• Gem Removal - Creating the gem removal sequences.
• Winning or Losing the Game - Ending sequences.
• The About Scene - Finishing touches on the Open Source version.

http://www.BlazingGames.com

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-2

Figure 1: Drawing the Gem

Creation of the Gem

While those of you who are familiar with Flash probably will just skip this section, I am providing
this to show how the gem object was created. Figure1 shows the five steps to how the gem was
created, but I will describe the process below for the sake of completeness.

Step 1: Create a square. This is simply a matter of taking the square tool and drawing a square.
Make sure the pen color is different from the fill color. Size really isn't important as the image can
be scaled to the proper size.

Step 2: Rotate the square 45 degrees. This only requires the selection of the entire square (double
clicking, or draw a box around it with the arrow tool) then using the transform panel to rotate the
object.

Step 3: Use the line tool to make a M like or W like shape. In the real game I used a W like shape,
but for this demonstration, I will go with an M type shape. Simply done by drawing four lines. If
you don't like where the lines are, remember that you can adjust the lines by using the subselection
(white arrow) tool.

Step 4: Connect the lines to the top and bottom of the gem to form facets.

Step 5: Fill in the individual facets with the colors you like. I like to have lighter colors on one
side and darker colors on the other to give a shaded look.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-3

Figure 2 - Logo screen shot

NIM logo

Normally when I create a game, the title and menu screens are the last screens that are created.
For this chapter, however, I am going to create the games title sequence first. The title screen is
it's own scene. The scene starts off blank. Seven gems then grow onto the screen in what at first
seems to be a random pattern. Once the gems are fully grown the letter N fades in behind the
gems. This is followed by three gems appearing to create the letter I and another 7 gems to form
the M. If you look at the screen shot of the final logo (Figure 2) you will see what the final screen
looks like.

To create this sequence, a large number of layers are used. While the number of layers could be
reduced (you will see a technique for that later in this chapter), I figured that for a title sequence,
the extra layers wouldn't hurt.

Each gem is on it's own layer. When I created this title, I first layed out all the gems into a rough
NIM pattern. To make sure that people could read the title, I then used the line tool to create an
outline of the letters. I filled the outlines with a solid color and turned each of the letters into a
symbol. At this point I had something similar to Figure 2.

The appearance of the gems are then stepped so that they don't all appear at once, with delays for
the appearance of the letters added. A second keyframe is created for each of the gems. The first
keyframe is scaled to 10% of the original size. A motion tween between the two keyframe's is
then added.

The fading letters is a simple alpha blending tween. You start by creating a second keyframe of
the letter. The first keyframe is then set to an alpha level of 0. A motion tween is then placed
between the two keyframe's.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-4

Play Game button

The play game button is made by just typing the words "Play the Game" in a large font,
converting the font into vector objects by using the break apart command twice and then
coverings the whole group of objects into a button symbol. The color of the text is changed for
the over and down frames of the button. A solid box that covers the text is used for the hit button.
The same technique is used for the “About the Game” and the “Visit Spelchan Software’s
website” buttons.

The appearance of the play game button is easily handled by having a keyframe with the button
outside the screen and a second keyframe with the button in the final position. A motion tween is
added between the two frames. Likewise, the same thing is done with the other two buttons.

For the button to actually do something, a small bit of action script is needed. To associate code
with the button, the button has to be given a name. This is done by typing the name into the
instance name section of the properties panel (in the left corner of the properties panel). In our
case, we are calling the button “play_btn”.

play_btn.onRelease = function () {
gotoAndPlay("Game", 1);

};

This code simply tells the button that it is to execute the command between the curly braces when
the button has been released. More technically, the command assigns a function to the button's
onRelease variable. As we do not have an existing function, we are creating an inline function by
using the function keyword. The command in the braces simply tells Flash to start playing the
scene named "Game", which we will be creating in the next section.

The About button is going to be labelled “about_btn” and will play a scene that we will create
later in this chapter.

about_btn.onRelease = function() { gotoAndPlay("About", 1); };

Finally, the visit button, which we will label “spelchan_btn” will open a new web page when it is
clicked.

spelchan_btn.onRelease = function() { getURL("http://www.Spelchan.com",
"spelchan"); };

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-5

Figure 3: Layout

Limiting Layers
In theory Flash lets you have as many layers as you desire. In reality, however, you should try to
limit the number of layers that you use. The technique I used in the title sequence shows you a
good way of reducing the number of layers and would work for many situations.There are three
main reason that it is a good idea to limit layers: Designer overload, memory, and Flash workload.
Lets briefly look at each of these reasons.

Designer overload is caused by the designer having to deal with a huge number of layers. When
you have too many layers to deal with, it becomes harder to find the layer you need and if there is
interaction between layers that are of substantially different levels, then work can be frustrating.
To help prevent this, Flash allows you to place layers into folders. This helps keep isolated
elements away from each other and keeps the time line much more manageable.

Every layer takes up memory. Lots of memory is quite common, so this may not be too much of a
concern. Still, you never know how old a computer is that uses your program, and with gaming
consoles starting to attempt to get into the browser area you never know how little memory a
user may have.

Finally, the more layers you have, the more work Flash has to do. Even if the layer is not being
animated, Flash still has to check to make sure that the images on that layer are not being
obscured by an animated object. While Flash does this dirty rectangle work very efficiently, it still
does take time and if a person has a slower computer (or like me has far too many programs
running at a time) then that can result in sluggish animation.

To layout the game, we need to get the 40 gems to appear. If you look at Figure 3 you will see
what the final layout looks like. The problem here is that 40 gems would result in 40 layers. That
is a lot of layers to keep track of. So instead of forty layers, let us group each row into a layer. In
fact, we could probably have all forty gems in a single layer, but I originally designed this around
four layers.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-6

Five Object Animating Limit

Those of you familiar with Flash probably already know that Flash has a tendency to act funny
when you try having animation on a layer that contains more than one object. As that is the case
how are we going to animate the gems? After a bit of thought, I realized that at any given time, I
would only need five gems animated at a time. This can be handled by creating five animation
layers.

The animation is simply handled by assigning gems to animation layers. When the gem reaches it's
final position, the layer it belongs to then adds that gem to it's objects. The animation layer is
again free to hold another gem.

To demonstrate, lets deal with the first few gems. We create the gems outside the screen in a
pattern that wraps clockwise around the screen. The first gem gets assigned to GemAnim1, which
is our first animation layer. It uses simple position keyframe animation to move (the first keyframe
is where the animation starts, the last keyframe has the gem where the animation ends and a
motion tween is placed between the two keyframes). The second gem uses GemAnim2, the third
uses GemAnim3 and so fourth. Gem number 6 has no layer, but as it will not start to be animated
until gem 1 is in it's final position, it can use GemAnim1. It can do this because there is no longer
an object in this animation layer as a gem has been added to the appropriate gem layer. Gem 7 is
not needed until gem 2 has been placed in it's layer, so it will use the GemAnim2 layer. And so on,
until all forty gems have been animated.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-7

Player Panel

The player panel could have been designed as an all in one object, but that would have added a bit
of complexity to the design and I wanted to try and keep this movie as simple as possible for
those new to Flash. Instead, the panel is simply a rectangle with rounded corners. It is animated
into it's final position by using a simple motion tween.

Once in it’s final position we add the components on the panel. The first component on the panel
is the message bar at the top of the panel. This is a simple dynamic text object labelled “messages”
and set to use a center aligned 24 point grey “_typewriter” font. Below that we create a static text
message that reads “Take how many?” I broke this into vector text and created a graphical
symbol out of the text. Finally there are three buttons labelled “1,” “2,” and “3.” These three
buttons are created the same way we created the "Start the Game" button. Simply type in the
number. Break apart the number so you get a Flash object. Select the "Make Symbol" option to
convert the object into a button symbol. Fill in the over and down keyframes with different
colored versions of the number object. Finally, in the hit keyframe, create a solid box that covers
the number.

Once all the components of the panel are visible, we need to make the three buttons actually do
something. The code for the buttons is similar to the code that we used with the start game
button. The one big difference is that we are using a function that is defined somewhere else. So
instead of imbedding the function right into the button's onRelease definition, we are instead
telling Flash to use an existing function. Or, at least, we will as soon as we write that code.

one_btn.onRelease = take1btn;
two_btn.onRelease = take2btn;
three_btn.onRelease = take3btn;

Within the first frame, I have all of my Action Script methods defined. Some programmers
recommend using the second frame so the first frame of the animation loads faster, but as this is a
separate scene this is irrelevant. The reason the functions are all placed on the same frame is
simply to keep all the non-frame specific code in one place. It is a good habit to get into as it
makes your movies much easier to debug.

The first function that we will write is a function that sets the message bar text. While this is a
very simple thing to do and could be done directly wherever the message needs to be set, I find
calling a function that sets the message bar is a bit easier to understand, therefore making the code
a bit easier to read. Quite simply, this function takes the text passed to it and assigns that text to
the dynamic text object we defined in the panel.

function setMessage(s)
{

messages.text = s;

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-8

}

The next function that we are creating is a simple placeholder for a function we will be needing in
the future. It simply writes a message to the console saying that we haven’t implemented it yet. It
will eventually be used to hide the buttons when it is not the players turn.

function updateButtons()
{

trace("updateButtons() not implemented yet");
}

Finally we will write the three button handling functions. As you can see, the methods simply set a
variable to how many gems are being removed and then calls the updateButtons() function, which
will be discussed later. Finally it calls the play() command which causes the movie to start playing.
This is important, as the movie is stopped whenever it is the player's turn. Again, this will be
covered in more detail later.

/*
 * Called when player clicks on the take 1 button
 */
function take1btn()
{

setMessage("You are taking one gem");
gemsToRemove = 1;
updateButtons();
play();

}

/*
 * Called when player clicks on the take 2 button
 */
function take2btn()
{

setMessage("You are taking two gems");
gemsToRemove = 2;
updateButtons();
play();

}

/*
 * Called when player clicks on the take 3 button
 */
function take3btn()
{

setMessage("You are taking three gems");
gemsToRemove = 3;
updateButtons();
play();

}

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-9

Initializing the Game

At this point, we are now ready to get the game running. To start the game we have a bit of code
on the first frame that prepares the game to run. The initialization code simply calls the initialize
method and then sets up the games variables. You will notice the variables are not quite correct.
This is a bit of a kludge to make the endTurn function easier to write. The end turn function
(which will be written later) will remove a gem and swap the players so by setting the player to
the computer and having an extra gem, we are actually setting the game up to start with the player
and 40 gems. The endTurn function will be discussed later in this chapter

initialize();
gemsToRemove = 0;
// :CHEATING CODE:
currentPlayer = PLAYER_COMPUTER; // player will switch imediatly
gemsRemaining = 41; // gem will be removed immediatly

The initialize function is designed to run just once. The function then sets up some "constants".
These are variables that have been assigned a value that doesn't change. The purpose of these
variables is to create more human readable programs. In this case, it provides words for
explaining what player is being used.

function initialize()
{

if (PLAYER_PLAYER != undefined)
return;

PLAYER_PLAYER = 1;
PLAYER_COMPUTER = 2;

}

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-10

Updating buttons

The user interface has one potential problem. The buttons for players actions are accessible at all
times. This means that the player can click on buttons while gems are being removed or while the
computer is taking it's turn. This can lead to strange game play behaviour. While it is certainly
possible to ignore this problem, a little bit of Action Script can solve this problem. This is where
the updateButtons function comes in. You have seen this function called when the player clicks on
a button. Now we are going to replace this function with one that actually does something. This
function sees if it is a proper time for a button to be clicked. If it is, it makes the buttons visible,
otherwise it makes the buttons invisible.

function updateButtons()
{

if ((gemsToRemove > 0) || (currentPlayer == PLAYER_COMPUTER))
{

one_btn._visible = false;
two_btn._visible = false;
three_btn._visible = false;

}
else
{

one_btn._visible = true;
two_btn._visible = true;
three_btn._visible = true;

}
}

You control the visibility of a button or movie clip by setting that instance's _visible variable.
Setting it to true makes the button visible. Setting it to false not only makes it invisible, but also
prevents it from being clicked. Some of you may not be familiar with the term instance. Whenever
you have a class, such as a button or movie clip, each newly created object of that class is called
an instance. All instances are separate from each other, even though they are from the same class.

The function starts by deciding if the buttons should be hidden. There are two conditions that will
cause the buttons to be hidden. First, if gems are in the process of being removed. Second if it is
not the players turn. If either of these conditions are met, the buttons are hidden by setting the
_visible variable on all three buttons to false. If neither of these conditions are met we assume that
the buttons are invisible and make them visible by setting the _visible variable to true.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-11

Ending the Turn

The main endTurn function is designed to handle all of the game logic. This function will be called
at the end of each gem removal sequence (which we will be creating in the next section).

function endTurn()
{

--gemsToRemove;
--gemsRemaining;
if (gemsToRemove < 1)
{

if (currentPlayer == PLAYER_PLAYER)
{

currentPlayer = PLAYER_COMPUTER;
gemsToRemove = Math.floor(Math.random() * 3) + 1;
if (gemsRemaining < 4)

gemsToRemove = gemsRemaining;
setMessage("Computer is taking " + gemsToRemove + " gems");

}
else
{

currentPlayer = PLAYER_PLAYER;
setMessage("Your turn!");

}
}
updateButtons();

}

The first thing this function does is reduce both the number of gems to remove as well as the
gems remaining. It then checks to see if all the gems that were suppose to be removed have in fact
been removed. If they have, Flash checks to see what player is currently playing. If it is the human
player then the computer player is given it's turn.

The computer takes a random amount of gems unless there are only three or less gems left, in
which case it takes the remaining gems. While this sounds simple enough, random numbers are
interesting to work with. The Math.random() function returns a number between 0 and 1, with 0
being valid but not ever taking 1. This number is obviously a fraction. We want a whole number
between one and three.

The first step in achiving this is multiplying the number by 3. This will result in a number between
0 and just under 3. By using the Math.floor() function, we can round down to the nearest whole
number. This results in a 0, 1 or 2. Simply add one to this and we have a number between 1 and 3.
As you can see, all this work is done in a single line.

Now we have finished writing all the Action Script functions we need to complete the game.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-12

Gem Removal

The game revolves around the removal of gems, so we obviously need a way of removing gems.
As the goal of this movie was to limit the amount of Action Script that is to be used, we will have
to animate the removal of all the gems by hand. This is not that difficult of a task, only requiring
that we have forty short (10 frame) animation sequences. The question is how do we stop all forty
gems from being removed? Unfortunately, this will require a bit of action script at both the start
and the end of each removal sequence. At the first frame of the sequence, we need the following
code

if (gemsToRemove < 1) stop();

This code is the same for all forty of the starting frames. It looks at the variable gemsToRemove
and sees if the value is less than one, which would mean that there are no more gems to remove.
If there is more gems to remove, the movie will simply continue to run, causing the current gem
removal sequence to be played. On the last frame of every gem removal sequence, we make a call
to the endTurn function we created last section. This adjusts the gemsToRemove variable as well
as handles the computer when it is the computer's turn to play.

For the gem removal, I just randomly selected a way of removing gems and manually created that
sequence. Before you can remove the gem, you need to remove the gem from it's gem layer and
place a gem in the same position as the removed gem but on one of the animation layers. From
there, you can freely animate the gem to be removed. I came up with three different ways of
removing gems. Shrinking, Fading, and Rockets.

The shrinking technique simply has the gem shrink into nothing. As variations on this technique,
some rotation can also be applied to the gem. Essentially you have the first keyframe with the gem
at normal size. You then have the last keyframe with the gem at a percentage of what it was,
optionally rotated. You then have a Motion Tween between the two frames.

Fading is simply having the motion tween between the gem with 100% alpha and the gem with
0% alpha. Rotation can also be done to this, but with gems near the gem you will want to keep
the rotation to only a small amount.

Finally, rocket is simply moving the gem from one location to another off-screen location.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-13

Figure 4: Ending sequence

Winning or Losing the Game
As you know, the game ends when the last gem has been taken. Also obvious is the fact that there
are two possible outcomes for this game. The player can win the game, or the computer can win
the game. Knowing this, our movie is going to have to be able to handle either situation. This will
require a bit of Action Script. To be extra precise, a very tiny bit of Action Script, as you will see.

Both sequences start out with the final gem growing larger while moving to the left side of the
screen. This is a simple scaling operation combined with a movement operation. The end result is
shown in figure 4.
At the end of this sequence, in a labelled sequence called we have the following lines of code.

if (currentPlayer == PLAYER_COMPUTER) gotoAndPlay("computerWins");

This code is very simple. All it does is see if the current player is the computer. If it is than the
computer has won so it will jump forward in the movie to the computer win animation sequence.
This is simply a label named "computerWins" which is about thirty frames from the player win
sequence. If the player has won, the animation will continue playing, and we happen to be over
the playerWins sequence so the player winning message will be shown.

Both sequences simply consist of a text message saying who won the game. Followed by a delay
of a couple of seconds. To conclude the sequence, we fade out and then jump to the title
sequence by using the following line of code:
gotoAndPlay("Title", 1);

This variation of the gotoAndPlay function will go to a specified scene (which we can label to be
whatever we desire, in this case the label given to the title sequence is Title. The 1 following the
scene label indicates that we wish to go to the first frame of that sequence. It is quite possible to
go to any frame within this scene.

Blazing Games Guide to Flash Game Development Chapter 6: Nim

Page 6-14

The About Scene

And now our first game has been completed. All that is left to do is add the about scene. This is
simply text that explains the open source licensing. There are two screens tied together by a more
button, which is assigned the label “more_btn”. The more button is simply a button created the
same way the “Play the Game” button was created.

To handle the transition between the first page and the second page we use the following code.

more_btn.onRelease = function() { gotoAndPlay("aboutPage2"); };
stop();

And to handle the transition between the second page and the title screen we use the following
code.

more_btn.onRelease = function() { gotoAndPlay("Title", 1); };
stop();

As you can see, there is a fair amount of work involved in creating even a simple game.

